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Power laws and stretched exponentials in a noisy finite-time-singularity model
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We discuss the influence of white noise on a generic dynamical finite-time-singularity model for a single
degree of freedom. We find that the noise effectively resolves the finite-time-singularity and replaces it by a
first-passage-time or absorbing state distribution with a peak at the singularity and a long time tail exhibiting
power law or stretched exponential behavior. The study might be of relevance in the context of hydrodynamics
on a nanometer scale, in material physics, and in biophysics.
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[. INTRODUCTION noise parametek determining the strength of the noise cor-
relations. Specifically, in the case of a thermal environment
There is a continuing current interest in the influence ofat temperaturd the noise strengtA «T.
noise on the behavior of nonlinear dynamical syst¢ing]. In the absence of noise this model exhibits a finite-time
Here the issues, for example, associated with the interferensgngularity at a timd,, where the variable vanishes with a
of stochastic noise with the deterministic chaos of mi@}s power law behavior determined hy. When noise is added
or extended systems, as for example, the noise-drivethe finite-time-singularity event df becomes a statistical
Kuramoto-Shivashinski equatidd], are of fundamental in- event and is conveniently characterized by a first-passage-
terest. time distributionW(t) [18]. For zero noise we thus have
In a particular class of systems the nonlinear charactew(t)= 5(t—t,), restating the presence of the finite-time sin-
gives rise to finite-time-singularities, that is, solutions thatgularity. In the presence of nois#(t) develops a peak about
cease to be valid beyond a particular finite-time span. One=t, vanishes at short times, and acquires a long time tail.
encounters finite-time singularities in stellar structure, turbu- The model in Eq(1.1) has also been studied in the con-
lent flow, and bacterial growtfb—7] as well as in in Euler text of persistence distributions related to the nonequilibrium
flows and in free-surface floW8—10]. Finite-time singulari-  critical dynamics of the two-dimensionAlY model[19] and
ties are also encountered in modeling in econophysics, geén the context of non-Gaussian Markov procesgd. Fi-
physics, and material physi¢$1-16. nally, regularized for smal, the model enters in connection
In the context of hydrodynamical flow on a nanoscalewith an analysis of long-range correlated stationary pro-
[17], where microscopic degrees of freedom come into playcesse$21].
it is a relevant issue how noise influences the hydrodynami- |t follows from our analysis below that for=0, the
cal behavior near a finite-time singularity. Leaving aside thdogarithmic case, the distribution at long times is given by
issue of the detailed reduction of the hydrodynamical equathe power law behavior
tions to a nanoscale and the influence of noise on this scale
to further study, we assume in the present context that a
single variable or “reaction coordinate” effectively captures W(t)~t~%, a= §+L (1.2
the interplay between the singularity and the noise. ' 2 2A° '
We thus propose to consider a simple generic model sys-
tem with one degree of freedom governed by a nonlinea

Langevin equation driven by Gaussian white noise, [:or vanishing nonlinearity, i.eA=0, the finite-time singu-

larity is absent and the Langevin equatidnl) describes a

g \ simple random walk of the reaction coordinate, yielding the
X _ well-known exponenta=3/2 [18,22,23. In the nonlinear

dt 2[x|1rH T () (=461, (1.9 case with a finite-time singularity the exponent attains a non-

universal correction depending on the ratio of the nonlinear

strength to the strength of the noise; for a thermal environ-

ment the correction is proportional toTl/

In the generic case fqe>0 considered here we find that

e falloff is slower and that the correction to the random

walk result is given by a stretched exponential,

The model is characterized by the coupling paramater
determining the amplitude of the singular term, the ingdex
=0, characterizing the nature of the singularity, and theth
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whereA—N/Au for u—0; in the limit u—0 this expres- X (a) F(x) (b)
sion reduces to expressigi.2). The above results fop

=0 andu>0 have also been obtained in the context of the 0 Finite time Absorbin
critical dynamics of theXY model[19]. singularity state
The paper is organized in the following manner. In Sec. Il sink
we introduce the finite-time-singularity model in the noise- 2! 1 X
less case and discuss its properties. In Sec. Ill we consider to=T°

the noisy case and discuss the ensuing Langevin equation
and associated Fokker Plank equation. We discuss the rela-
tionship to an absorbing state problem and introduce the
first-passage-time or absorbing state distribution. In Sec. IV FIG. 1. In(a) we show the time evolution of the single degree of
we review the weak noise WKB phase space approach to tHieeedomx. x reaches the absorbing state 0 at a finite timety. In
Fokker-Planck equation, apply it to the finite-time- (b) we depict the free energlf(x) driving the equation. The ab-
singularity problem, and discuss the associated dynamicelorbing statex=0 corresponds to the sink R(x).

hase space problem. In Sec. V we apply the WKB phase , . . .
Epace aSproagh and evaluate the weakpgé/ise absorbiﬁg st?ﬂg'Ch approach ”;‘3 #absorblng stat_e with exponent 1/(2
distribution at long times. We derive the random walk result &) &t imeto=2x5""/A(2+ ). In Fig. 1 we have fop
in the linear case fok =0, the power law tail fox=0, and =0 dep|clted the solutior and the free energly(x) driving
the stretched exponential behavior f@r>0. In Sec. VI we X 1o zero.
derive an exact solution of the Fokker-Planck equation in the
casen=0 in terms of a Bessel function and present an ex-
pression for the absorbing state distribution. In Sec. VIl we In the presence of noise the finite-time-singularity prob-
present a summary and a conclusion. Details of the phadem is characterized by the Langevin equatidri). Here the
space method is discussed in Appendix A; aspects of thaoise drives the variableinto a fluctuating state in compe-

Ill. LANGEVIN AND FOKKER-PLANCK EQUATIONS

exact solution in Appendix B. tition with the free energy that tends to drixe¢o the absorb-
ing statex=0. In the casg.=0 treated here with an absorb-
II. FINITE-TIME-SINGULARITY MODEL ing state the free energy has a sink and there is no stationary
] ) ) ) distribution; the probability leaks out at=0.2
_ Let us first consider the noiseless case for0. It is From another point of view, introducing the variahfe
instructive to express the equation of moti@hl) in the  _y2+4 the Langevin equatiofil.1) takes the form
form
1 dy N
— 1/(2
dx_ 1dF - sradat 2 @)y, (3.1)
dt= 2dx’ @3 | | |
In the noiseless case the varialgldecreases linearly to zero
where the potential or free energy has the form, at timet=t,. In the presence of noisefluctuates. We note,
however, that the noise is manifestly quenchedyatO,
F(x)=\In|x| for w=0, (2.2  Yielding the absorbing state. Absorbing state models of the

type in Eq.(3.1) for extended systems have been studied

A extensively in the context of directed percolation, catalysis,
F(xX)=——|x|™* for u>0. (2.3 and Reggeon field theof24—27.

K In order to analyze the stochastic aspects of finite-time
singularities in the presence of noise we need the time-
dependent probability distributiof(x,t) and the derived
first-passage-time or absorbing state probability distribution
W(t). The distributionP(x,t) is defined according t{23,2§

The free energy has a logarithmic sink f@=0 and a power
law sink for generalw>0. In both case$ drivesx to the
absorbing statx=0. Solving Eq.(2.1) in the logarithmic
case we obtain for positive the solution

x=\to—t. (2.4

IFor u<0 the free energy vanishes st 0. For u<—2 x pos-

. . . T . . _\2 sesses a run-away solution at a finite time. In the present context we
This solution displays a finite-time singularity &f=Xxg/X, confine our discussion to the cage-0, where the free energy has

wherexg is the initial value at timé=0, with x approaching a sink andx approaches an absorbing state.

the absorbing state with exponent 1/2. In other words, the 2, ihe caseu=—2 the free energyE = (\/2)x2, has the form of
attraction to the sink in the free energy occurs in a finite time, parmonic potential and the resulting Langevin equatioddt=
span; for times beyonth Eq. (2.1) does not possess a real _()/2)x+ 5, governs the stochastic dynamics of an overdamped
solution. This is the way we define a finite-time singularity in nojse-driven harmonic oscillator. The stationary distribution is
the present context. For genegal>0 we obtain the gener- given by the Boltzmann factd®yexp(~F/T), where the effective

alization of the solutior(2.4), temperature according to the fluctuation-dissipation theoref is
=A. For —2<u<0 the same result holds with the free energy
X=[N(2+ w)/2]Y@T [ ty— ]V ), (2.5  given by Eq.(2.3.
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P(y,t)=(8(y—x(1))), 3.2 X @)

Random walk

wherex is a stochastic solution of Eq41.1) and(- - -) indi-
cates an average over the noigdriving x. In the absence of
noiseP(y,t) = 8(y—x(t)), wherex is the deterministic solu-
tion of Eq.(2.1) given by Eqs(2.4) and(2.5 and depicted in
Fig. 1. At timet=0 the variablex evolves from the initial
conditionx,, implying the boundary condition

P(x,0)= 8(x—Xg). (3.3

At short timesx is close toxy and the singular term is not yet
operational. In this regime we then obtain ordinary random
walk with the Gaussian distribution

%2 A0
P(x t)=(27TAt)1’2exp[—M (3.4) R
' PINE ' ,‘
\Power law
approaching Eq(3.3) for t—0. At longer times the barrier t
A2x11# comes into play preventing from crossing the ab-
sorbing statex=0. This is, however, a random event that can W(t) A=0 ()

occur at an arbitrary time instant, i.e., the finite-time singu-

larity taking place at, in the deterministic case is effectively Poweriiaw
resolved in the noisy case. For not too large noise strength Exponential A0 e%ﬁgnﬁgl)

the distribution is peaked about the noiseless solution and
vanishes foix— 0, corresponding to the absorbing state, im-
plying the boundary condition

|

to

P(0t)=0. (3.5 FIG. 2. In (a) we show a particular realization of At early

times neaix, we have random walk behavior. At longer tintess
In order to model a possible experimental situation the firstattracted to the absorbing statexat 0. In (b) we depict the distri-
passage-time or here absorbing state distribuii¢gt) is of ~ bution P(x,t) in the logarithmic case fop.=0. Fort=0 P(x,0)
more direct interesf28,29. First-passage properties in fact = §(X—Xyp), i-e., the initial condition. For largdrthe distribution is

underlie a large class of stochastic processes such as diffjfoadened about the noiseless traject@fx,t) exhibits a power
sion limited growth, neuron dynamics, self-organized criti-'aw behavior for large near the absorbing state. (¢) we show the
cality, and stochastic resonanicks] absorbing state distributiokV(t). For smallt the distribution is

Since P(01)=0 for all t due to the absorbing state, the exponentially small; for largeit displays a power law behavior for
probability th,atx is not reachingc=0 in timet is tgus giv,en p©=0 and a stretched exponential behavior in the generic case for
- . ) - - >0.
by [oP(x,t)dx, implying that the probability—dW that x H

does reach=0 intimetlis—dW=if6°_ciX<1!t(dP/dt)-CO“- in the present case subject to the boundary conditions
sequently, the absorbing state distributigf(t) is deter-  p(x 0)=§(x—x,) and P(0t)=0. The absorbing state dis-

mined by the expressidi23] tribution W(t) then follows from Eq(3.6). We note that the
Fokker-Planck equation has the form of a conservation
W(t)=—Jx&P(X’t)dx. (3.6 law dP/ot+0J/ox=0, defining the probability currend
at =(1/2)(dF/dx)P—(1/2)AgP/dx. Inserting Eq.(3.7) in the

expression(3.6) for the distributionW(t) and using that]
In the absence of noisB(x,t)=8(x—x(t)) and it follows —0 for x—o we obtain another expression fé/(t):
from Eq. (3.6) that W(t) = §(t—tg), in accordance with the
finite-time singularity at=t,. For weak noise we anticipate
that W(t) will peak aboutt, with vanishing tails for smalt
and largéd. In Fig. 2 we have depicted a particular realization

of xin the noisy case, the distributidf(x,t) in a plot versus  thg apsorhing state distribution is thus equal to the probabil-
x andt, and the absorbing state distributig(t). ity current at the absorbing state.
In the case of Gaussian white noise the distribution

P(x,t) satisfies the Fokker-Planck equati#8,29

dF
dx

2P
3

1
W(t)= > (3.9

x=0

IV. WKB PHASE SPACE APPROACH
dF aP

From a structural point of view the Fokker-Planck equa-
dx + x| 3.7

tion (3.7 has the form of an imaginary-time Schiinger
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equationAdP/gt=HP, driven by the Hamiltonian or Liou-
villian H. The noise strengtiA then plays the role of an
effective Planck constant witR corresponding to the wave
function. A method utilizing a nonperturbative WKB phase
space approach to a generic Fokker-Planck equation for ex-
tended system was derived in the context of the Kardar-
Parizi-Zhang equation describing interface gro\W@0—-32.
In the case of a single degree of freedom this method
amounts to the eikonal approximatid®,23,29, see also
[33,34]. For systems with many degrees of freedom the
method has for example been expounded in RBH], based
on the functional formulation of the Langevin equation E>0
[36,37). In the present formulatiof30-32 the emphasis is
on the canonical phase space analysis and the use of dynami-
cal system theory38,39, for more details we refer to Ap-
pendix A. FIG. 3. We show the topology of phase space. The bold lines
The weak noise WKB approximation corresponds to thendicate the zero-energy submanifolds. We show representative or-
ansatzPxexg —SA]. The weight function or actiois then  bits for E>0 and E<0. The dashed line indicates a nullcline
to leading asymptotic order i satisfies a Hamilton-Jacobi (dx/dt=0) to the saddle pointx;p)=(c,0). At long times the
equationdS/dt+H=0 which in turn implies gorinciple of  orbit from x, to x migrates to the zero-energy submanifolds.
least actionand Hamiltonian equations of moti$¢40,41]. In

the present context the Hamiltonian has the form and p. The heavy lines represent the zero-energy submani-
folds p=0 andp=\/x'*#. For E>0 the energy surfaces
H= 1 2 1 d_F 4.1 are equidistant for larg& approaching a constaipt value;
2 2Pax ' for small x the manifold p~\/x**# for p>0 and p

~—4Ex"#/\ for p<0. ForE<O0 the energy surfaces are

yielding the equations of motion confined between the zero-energy submanifolds; the mani-
q 1dF folds approach X,p)=(0,0) according top~4|E|x**#/\
d_X: -5 d_+p (4.2) and for largep as p~\/x'*#. For E——o the orbits ap-
t x '

proach the positivg half-axis. The arrows indicate the di-
rection of motion on the manifolds. The dashed line indicates
a nulicline dx/dt=0) passing through the hyperbolic fixed
point (X,p)=(,0). In the long time limit the orbit fronx,

to x converges towards the zero-energy submanifolds.

dp 1 d°F 43
at 2P e (4.3
replacing the Langevin equatigqi.l). The noisey is then
represented by the momentyms S/ dx conjugate tox. The V. RANDOM WALK AND LONG TIME TAILS
Egs. (4.2) and (4.3) determine orbits in a canonical phase . .
space spanned byandp. Since the system is conserved the The weak noise phase space approach reviewed above
orbits lie on the constant energy manif@id given by E  affords a simple derivation of the asymptotic long time be-
=H. The free energ¥ is given by Eqs(2.2) and (2.3 and  havior of the distributions for the finite-time-singularity
the action associated with an orbit frorg to x in timet has ~ problem. In order to derive the transition probabilRyx,t)
the form according to Eq(4.5 we simply have to identify the rel-
evant orbit in phase space froxg to x which at long times
t dx asses close to the zero-energy manifolds.
S(XOHX,'[)=J‘ dt[pa—H} (4.9 P ¥
0

. - o A. The random walk case
According to the ansatz the probability distribution is then o o .
given by It is instructive first to consider the case=0. Here the

finite-time singularity ak=0 is absent, there is no absorbing

state and the Langevin equati¢h.1) takes the forndx/dt
(4.9 = 7(t), describing random walk on the whole axis. The

Hamiltonian is given byH=(1/2)p? and the equations of
The zero-energy manifolE=0 plays an important role in motion (4.2) and (4.3) have the formdx/dt=p, dp/dt=0
determining the long time distributions. InsertirF/dx  Wwith solutionsp=p, andx=xq+ pot. Insertingdx/dt andH
=\/xY"* in Eq. (4.1) the zero-energy manifold has a sub- in Eq. (4.4 for the action we obtainS=(1/2)fdt p

P(x,t)ocexp{ - S(XOT_)X'U .

manifold structure given bp=0 andp=\/x'"#. Accord- =(1/2)p§t and finally using Eq(4.5) the Gaussian distribu-
ing to Eqg. (4.2) the p=0 submanifold corresponds to the tion (3.4) for random walk.
noiseless deterministic motion given by E@g.1). In Fig. 3 We note that in order to obtain the correct limit of the

we have depicted the canonical phase space spanned byfinite-time-singularity problem we must incorporate the ab-
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P value of|p|. In this region and for not too smatlthe phase
space topology in Fig. 3 is similar to the random walk case

E>0 depicted in Fig. 4 and we infer unbiased random walk be-
havior, yielding the expression&.l) and (5.3). Second,

X searching for longer time orbits fromy to x we must choose
smallerp and we move into the region of phase space for

E>0 negative energy where the finite-time singularity dominates
the topology, as shown in Fig. 3. In the limit of long times
the orbit approaches asymptotically the zero-energy sub-

Y

Y

A

manifolds.
FIG. 4. We depict the phase space topology in the random walk
case forh =0. The energy manifolds are equidistant corresponding 1. The logarithmic case =0
to constant values gi. The bold line forp=0 is the zero-energy . . .
manifold. In the logarithmic case.=0 the zero-energy condition

using Egs.(4.1) and (2.2) yields the relationshigp=\/x,

sorbing state condition at=0. This is achieved by using the corresponding to the hyperbolic manifold; note that the

method of mirrord23] and considering foP(x,t) the linear =0 manifold corresponds to deterministic motion and yields
combination, S=0. Settingp=X\/x andH=0 in the action in Eq(4.4) we

then haveS= ['dt pdxdt=[*dx\/x=\ Inx. Moreover, for

3 1 (X—Xg)? p=\/x the equation of motion(4.2) reduces todx/dt
P(x,t)=(2m At) 7% exp — —+— =\/2x with the growing solutiorx?=X\t. In the long time
limit where the orbit is close to the zero-energy manifold we
(X+Xg)? thus obtainS~ (\/2)Int, yielding according to Eq(4.5) the
“8XR T ToAr | ) (5.9) power law distributionP(x,t)ect~*?4) Owing to the ab-

sorbing state the distributioR(x,t) must vanish forx—0.
in the half spacex=0. This distribution is a solution of the As discussed in Appendix A this limit is reproduced by push-
Fokker-Planck equation and vanishesxer0. For smallx it ing the WKB approximation in Sec. IV to next order in,
behaves linearly wittx, yielding the correction- A Inxto S. Finally, we obtain in the
weak noise long time limit the distribution
P(x,t)=(2/m) Y2 (At) " ¥y exp( — x3/2At).  (5.2)
P(x,t)ocxt™ (M2A), (5.4
Using Eq.(3.8) we readily obtain the well-known random
walk result Moreover, applying Eq(3.8) we deduce the weak noise long
time absorbing state distribution
W(t) = (2/m)Y2,(At) " 3exp(—x5/2At). (5.3
W(t)oct~(M2A) (5.5
For smallt the distribution vanishes exponentially. It dis-
plays a maximum at,=x3/3A and falls off algebraically as with scaling exponentv=\/2A The expression5.4) and
t~« for larget with scaling exponentr=3/2. This behavior (5.5 show that the finite-time singularity or, equivalently,
is in accordance with the general discussion in Sec. lll and igbsorbing state attracts the random walker and increase the
graphically depicted in Fig. 2. The phase space topology iffalloff exponenta. We note that the WKB approximation to
the random walk case is shown in Fig. 4. leading order in\ fails to retrieve the random walk exponent
3/2 in the limitA\ —0 and the maximum o®/(t) aboutt,.
B. The absorbing state case

For zero noise and fox=0 we have from Eq(1.1) x 2. The generic casg>0

=X, at all times, whereas the solution in the case of a finite- In the generic casg.>0 the zero-energy manifold im-
time singularity is attracted to the absorbing state at tigne  plies the constrainp=X\/x'*# and we obtain similar to the
In the presence of noise the attraction gives rise to a chandegarithmic case above the actiorS=['dt pdxdt
of the form of the absorbing state distributigv(t) from a = [*dxN/x}T#=—(N/u)x “+const and the equation of
function peak to a broadened peak. For laxgthe distribu- ~ motion, dx/dt=\/2x**#, on the zero-energy manifold with
tion shows a maximum aboty; for intermediate values of solution x**2=(1+ u/2)\t. In the long time limit we thus
the maximum is betweem, and the random walk value find the action S=— (N w)[(1+ p/2)At] # W 4N/ .
x3/3A. Because of the attraction to the absorbing state wdhe second-order correction & evaluated in Appendix A,
also obtain a faster long time fall-off and thus a positiveis given by —A(1+u)Inx and we obtain the weak noise
correction to the random walk exponemt=3/2, depending long time distribution

on the strength.

The plot in Fig. 3 permits a simple qualitative discussion 1+ A M @]
. - . P(x,t)oex "#expg-—11| 1+ 5|\t =11,
of the finite-time-singularity phase space phenomenology. Ap 2
Firstly, a short time orbit fronmx, to x corresponds to large (5.6
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—[u/(2+ )]
1+2 1

ZM

\ and complete set satisfying the eigenvalue equation
W(t)“GX%E[
Bessel function$44,45 we obtain for the probability distri-

and absorbing state distribution cording to the Fourier-Bessel transfofd8], an orthonormal
5.7 H g (X) = (A%/2)k?y(x). Expanding the right hand side of

R Eq. (6.4) on the setyy, and using a well-known identity for
generic finite-time singularity characterized by the ingex

the power law behavior oP(x,t) andW(t) is altered to a x(M24) +(1/2) ef(x2+x(2))/2At XXo
stretched exponential behavior dependingearin the limit P(x,t)= ()= (12) X '1/2+(>\/2A)(H)-
n—0 we obtain the power law behavior. We note again that X0

the WKB approximation is unable to produce the random (6.9

-3/2 _
walk prefactort for A =0 and the peak aiv(t) aboutt,. Herel , is the Bessel function of imaginary argumehf(z)

=(—1)"J3,(iz) [43].
By means of Eq(3.8) we moreover deduce the absorbing
In this section we return to the Fokker-Planck equationstate distribution
(3.7 and present exact expressions for the transition prob-

VI. SOLUTION OF THE FOKKER-PLANCK EQUATION

Xl+MA

ability P(x,t) and the absorbing state distributia¥(t) in W(t) = 0 e*"é’zm(2At)*(3’2)*(”2A)
the the logarithmic casg=0. We have summarized key I'(1/2+N\/12A) '
points in the derivation here and defer details to Appendix B. (6.6

Similar expressions have also been derived in the context of

L ) the XY model[19].
In the logarithmic case the Fokker-Planck equation as-

sumes the form

A. Quantum particle in a repulsive potential

B. The distribution P(x,t)

P AP N P A The expressiof6.5) provides the complete solution of the
w2 E + % ax y P. (6.9 finite-time-§ingularity pr(_)bllem f0|,u=.0. The expression is
discussed in more detail in Appendix B. For0 we have
Removing the first-order term by means of the gauge transP(X,0)=8(x—Xo) in accordance with the initial condition
formation expl)=x "2 we have (3.3). For smallt we obtain the random walk resuit(x,t)
=exd — (x—xg)%2At]/(27wAt)¥? in accordance with Eq.

d (3.4). For A\=0 we haveP(x,t) ={exd — (x—Xo)?/2At]+ Xq
—A—[exa—h)P]=H[exa—h)P], 6.2 —xM(2wAt)Y2 in agreement with Eqg(5.1) for random
walk with an absorbing wall at=0.
where the Hamiltoniam is given by For long times and close to the absorbing state=0 we
obtain the asymptotic form
H 1A2 02+k2 1+2A ! (6.3 2452
=—-A"—+—+ —|=. . L+ NA o~ (x2+x2)[2At
27 9x2 8 N x2 P(x.t) 2XXg 3e . 0 (2A1)~ (312~ (\21),
This Hamiltonian describes the motion of a unit mass quan- r §+ﬂ
tum patrticle in one dimension subject to a centrifugal barrier 6.7)

of strength §2/8)(1+2A/\). ForA=0 the barrier is absent
and the particle can move over the whole axis; this casgor smallx the distribution vanishes linearly due to the ab-
corresponds to ordinary random waR3]. For A#0 the  sorbing state. For largethe distribution exhibits a power
particle cannot cross the barrier and is confined to eithefaw behavior with scaling exponent=3/2+\/2A. In the
half-space; this corresponds to the case of a finite-time sinyeak noise limit the distribution is peaked about the noise-
gularity subject to noise and an absorbing state=a0. less solution(2.4). For A.=0 we obtain the random walk
The Fokker-Planck equatiof6.2) has the form of an result in Eq.(5.2) and we note that the finite-time singularity
imaginary time Schrdinger equation with Planck constahit  or absorbing state lead to an increase of the scaling exponent
for the wave function expth)P and is readily analyzed in  and thus a faster falloff in time. In the weak noise limit the
terms of Bessel fUﬂCtiOl’[ﬂ-Z]. Incorporating the initial con- Sca"ng exponent approaehMZA in agreement with the
dition P(x,0)= &(x—Xo) by defining P(x,t)—P(x,t)6(t)  WKB analysis in Sec. IV. In Fig. 2 we have depicted the

we obtain the inhomogeneous differential equation distribution P(x,t).
IP(x,t) AL o
P S(X—Xg) 8(t)— Ee He "P(x,t) (6.4 C. The distribution W(t)

The absorbing state distributio/(t) in Eq. (6.6) van-
for the determination oP(x,t). On the positivex andk axis  ishes exponentially for smatl For larget the distribution
the wave functionsyy(x)=(kx)Y2J1,.,21(kx) form, ac-  shows a power law behavior with exponert 3/2+ \/2A.
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In the deterministic limitA=0 we haveW(t)=8(t—tg), The present study also suggests generalizations to the case
wherety=x3/\. For smallA the exponent approacha&2A  of damping and to the case of several coupled variable sub-
in accordance with Eq(5.5). The distribution has a maxi- ject to a finite-time singularity.
mum at
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For A=0 we havet,,,—1t; and forh=0 the random walk
resultt,,,=Xy/3A. For large coupling strengtty,,,—0. Ex-
pandingW(t) aboutt ., We obtain the Gaussian distribution

W(t)oce™ (- tmad /o, (6.9  processes, respectively.
characterized by the mean square width APPENDIX A: THE PHASE SPACE METHOD
AAXA The weak noise WKB approximation applied to the
a'2=—03. (6.10 Fokker-Planck equation is well documentét],23,29,34.
(3A+N) Here we review this method with emphasis on a canonical

phase space approach which we have found useful in dis-
SinceW(t) falls off as a power of only a finite number of cussing the pattern formation and scaling in the noisy Bur-
moments (t")= [t"W(t)dt exists. For (2—1)A<\ we gers equatiof30,32,46—48 We also note that the approach

have follows from a saddle point approximation to the functional
Martin-Siggia-Rose approach to nonlinear Langevin equa-
X3 tions[36,37,49,50
n
(= H D3 (6.1 |
1. To leading order A
The distributionW(t) is shown in Fig. 2. Taking as our starting point a generic Langevin equation
for one degree of freedomdriven by Gaussian white noise,
VIl. SUMMARY AND CONCLUSION dx 1
—=—=G(x)+ (1), t)=4(1), Al
In this paper we have addressed the problem of the influ- dt 2 )+ n(t), {7} (O)=3(1) (AD)

ence of white Gaussian noise of strengthon a generic . ) o
finite-time singularity of strength, characterized by the ex- the associated Fokker-Planck equation for the distribution
ponentu. We have for simplicity considered only a single P(X:t) takes the form
degree of freedom. We have found that in the case of a loga- P 19
rithmic sink in the free energy driving the variable, corre- — =
sponding to a square root singularity, the first-passage-time gt 2.9x
or absorbing state distributiow/(t) displays a peak about
the finite-time singularity and a long time power law tail
«t™ ¢, characterized by the scaling exponent 3/2+ \/2A.
The exponent is nonuniversal and depends on the ratio be-

tween the singularity strength and the noise strength. In P(X,t)xexr{ -
the case where the noise originates from a thermal environ-

ment at temperaturé we haveA«T and the scaling expo- ang expanding the actiod in powers of the noise strength

nent depends on the temperatusies 3/2+ constTT. A, S=S,+AS,, S, satisfies the Hamilton-Jacobi equation
In the generic case of a finite-time singularity charactermo]

ized by the exponenit>0 the weak noise WKB approach

shows that the power law tail fon=0 is changed to a Sy ISy

stretched exponential with a slower falloff. - TH(pX)= P="r (A4)
To the extent that the character of a finite-time singularity

in the vicinity of threshold can be modeled with a Sing|eimp|ying aprinciple of least actiorf40]. The actionS, thus

degree of freedom the present study should hold as regatghs the form

the influence of noise on the time distribution. We note, in

GP+ A— (A2)

Applying like in quantum mechanid42] the WKB approxi-

mation,

S(x,t)
A

: (A3)

particular, that in the case of a thermal environment at tem-

peratureTl the change of the scaling exponent becomes large So(X,1) = f dt( p—— H) (AS)
in the limit of low temperatures as the distribution narrows

around the noiseless threshold time. with Hamiltonian given by
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1
H=>p(p-G), (A6)
implying the Hamilton equations of motion
dx lG AT
G- 26th (A7)
dp 1 dG A8
2P ax (A8)

The deterministic coupled Eq$A7) and (A8) replace the
stochastic Langevin equatidf.1) for weak noise. The noise
7 is replaced by the canonically conjugate momentpm
which by means of EQSA3) and (A4) is given in terms of
the distributionP
p=—AdInP/ox. (A9)
The equations of motion define orbits in &,10) phase
space lying on the constant energy surfaBesH and the

PHYSICAL REVIEW E66, 021103 (2002

(A12)

These equations have a hyperbolic fixed point>ap]
=(,0). The nullclinedx/dt=0 to the saddle point is given
by p=\/2x, indicated in Fig. 3 by the dashed line. The zero-
energy manifolds are given hy=0 andp=X\/x. The con-
served energ\H=E provides the first constant of integra-
tion. Solving for x we have x=\/(p?—2E). For E>0
p— *+(2E)Y? for x—= as indicated in Fig. 3, yielding in
that limit the random walk phase space topology depicted in
Fig. 4. ForE<0 x=\/(p?+ 2|E|) exhibiting a maximum at
the nullcline in a plot ofx versusp as shown for two repre-
sentative orbits in Fig. 3. Using energy conservation to solve
the equation of motion fop and subsequently for we ob-
tain the solutionsx®=(t+t;)[A+2E(t+t,)] and p>=2E
+N/(t+t,), wheret, is the second constant of integration. A
specific orbit fromxy to x; in time t thus determines the
constantE andtq; the momentunp becomes a slaved vari-
able, and the action evaluated along the orbit yields the dis-
tribution.

Considering as final value the absorbing state 0, the

general discussion of the original stochastic problem is relong time orbits lie in the negative energy region and elimi-
placed by an analysis of the phase space topology. The preating E we obtain the solution, @t' <t

scription for deriving the distribution to leading order 4n
thus amounts tdi) solve the equations of motiof®\7) and
(A8) for an orbit from an initial value, to a final valuex
reached in the time spat p being a slaved variabldji)
evaluate the actioi$ associated with an orbit according to
Eq. (A5), and, finally, (iii) derive the transition probability
from X to x in time t using the ansatéA3). The zero-energy

manifold here plays an important role in determining the

long time distributions. In the limit—oc a given finite-time

orbit from Xq to x thus converges to the zero-energy mani-

fold.

X2=(x3(1—t'/t)+ At")(1—t'/1). (A13)
The energy is given byE|=(\t—x2)/t? and we note that
the energy approaches zero in the long time limit, i.e., the
orbit from x, to x=0 migrates to the zero-energy manifold.
Finally, for the action associated with the orbit we obtain

|

(A14)

Ao -1
n_—
X5

1
%72

In the case of an overdamped harmonic oscillator deyielding the long time distribution

scribed by the Langevin equatiodx/dt=— wXx+ 7 the
phase space analysis was carried out in (8. In the case
of random walk given bylx/dt= 7 the analysis is performed
in Sec. V A,

Finite-time-singularity case

In the generic finite-time-singularity cas&=\/x!"#,
and we have the HamiltoniarH=(1/2)p(p—\/x1"#),
yielding the equations of motiodx/dt=—\/2x**#+p and
dp/dt=—\(1+ u)p/2x***. These equations are, however

not particularly tractable and we therefore only consider theﬁurning point diverges in the limitE|

logarithmic case fow=0. HereG=\/x and we obtain the
Hamiltonian

H= ! » A10
and the equations of motion

dX— A + All

T (A11)

P(Xo— 0,t)oct ~M2A, (A15)
in accordance with the expressi@4).

Alternatively, eliminating the momentum the equations
of motion (A11) and (A12) reduce to a second-order equa-
tion for x, d®x/dt?=—dV/dx, describing the motion of a
particle of unit mass in the attractive potenti&g(x)
= — (1/8)\?/x. It then follows by simple quadrature that all
direct orbits to the absorbing state=0 take a finite time,

' whereas the traversal time of negative-energy orbits with a
—0; this is in accor-
dance with the phase space behavior shown in Fig 3.

2. Next leading order in A

The next leading order it is obtained fromS; which by
insertion satisfies the equation of motion,

56 g

S, )
wheredSy/dx is obtained from the first-order solution.

o

9, 1d

ISy
ox 2 dx

Cox

X

5 ) , (Ale)
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a. Random walk case —0 for x—0 and the completeness and orthogonality of
From the random walk case discussed in Sec. V A we/k(X) follow from the Fourier-Bessel integral representation
have Sy=(x—Xg)?/2t. Consequently, Eq(A16) takes the

form
Sy [X=Xp|dSy 1 f(r)=fmdkjwdr'ka(kr)Jy(kr')f(r'), (B3)
—W—< n )W_Et’ (A17) 0 0
with a particular time-dependent solution valid for »>1/2. We proceed by Fourier transformifg.4),
1
Sl=§hﬂﬂ, (A18) do .
P(x,t)zfﬂe*'“’tpw(x), (B4)
yielding S= (x—x)?/t+ (A/2)In|t| and the Gaussian distri-
bution
, and subsequently expandipg(x)x"'?* and §(x—x,) on the
X—X i i
P(x,t)oc|t|1’2ex;{ | AtO) (A19) eigenfunctionaf(x),
As in the quantum casf42] the next leading correction P (x)x“ZA:fxdkz//k(x)p ) (B5)
yields the normalization factdt| 2 ¢ 0 o

b. Finite-time-singularity case

In the finite-time-singularity cas&=\/x'"* and from 5(x—xo)=f dki(X) (X)), (B6)
abovedS,/dx=0. We then obtain inserting in EGA16) 0

_ ‘9_81: _ A ‘9_81_ 1tp A (A20) yielding the expansion coefficients
at 2x1tm ox 2 y2tu’
with a particular space-dependent solution - X2 g (x6) .
kK= T oA
Si=—(1+u)Inx, (A21) —iw+Ak?2

. . . l+ .
giving rise to the factox™"* in Eq. (5.6). Finally, integrating ovemw in the lower half-plane and pick-

ing up contributions from the branch cut we obtain
APPENDIX B: THE FOKKER PLANCK EQUATION

Here we discuss the Fokker-Planck equatiérl) in the

logarithmic caseu=0 in more detail. Applying the gauge P(X,t)=f dk ke—Akzt’Z(XXo)1/2(X/Xo)M2A
transformation, ex)=x"?2, and incorporating the bound- 0
ary condition(3.3), P(x,0)= 8(x—X,), we obtain the inho- X J1/ms n 1o (KX) J1/5 2728 (KX) (B8)

mogeneous differential equatids.4), with HamiltonianH
given by Eq.(6.3) corresponding to the motion of a quantum _ _
particle subject to a centrifugal barrierl/x?. This integral can be reduced further using the iderjtity|

1. Exact solution

* 2,2 1 2. 2y 102
The right hand side of Eq6.1) has the same form as the f dx xe 7~ JV(aX)JV(BXF;e(a TRV (aBl2p?),
standard Bessel equatipfd,45. Noting also the analogy to P (B9)
the quantum case of particle motion in spherical coordinates
[42] it follows that

P (x) = (kx)2Z,,(kx), (B1)

whereZ,(kx) is a solution of the Bessel equation, satisfies 2. Random walk, short time, and long time limits
the eigenvalue equation

yielding Eq.(6.5) in Sec. VI.

In the random walk case far=0 we obtain usind
H e X) = K24 (X) (B2)  =2(1/2mx)"?sinhx, the expressiori5.1). In the short time
limit t<xxg/A, using | ,(x)o<(1/2mx)Y2exp) for x—o
for v==(1/2+\/2A). The Bessel function of the first kind [44] we obtain Eq(3.4) and fort=0 the boundary condition
J,(kx) satisfies the absorbing state boundary conditipn (3.3).
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In the long time Ilimit t>xxy/A using 1,(x) for small A we obtain by insertion in Eq6.5
o« (x/2)"IT' (v+1) for x—0 [44] we obtain Eq.(6.7) Using
Eq. (3.8 and['(z+1)=2zI'(z) we finally obtain the absorb- 1 1A (x3\T2ar(2)
ing state distributior(6.6). P(x,t)~ 4772 Xo A Xt

The moments ofW(t) are easily worked out. Using m
I'(z)=[t* le 'dt [44,45 we have

e—(x2+x(2))/2At

X fﬂdgﬂ[e(A/A)f+(0)+e(x/A)f,(o)]_
0 sinhu

1
2\t §+ﬂ_”) (B15)
<ﬂ>=J‘ﬂmK0dt= A X , (B10)
F(—+—) The expressioriB15) for P(x,t) is directly amenable to an
2 2A asymptotic analysis foh —0 by means of Laplace’s method

[51]. For smallA the main contributions to the integral origi-
nate from the maxima df, (9) andf_(#8). The two maxima
o in the interval 0<#<<m are given by cog+==exp(—u),
3. Weak noise limit yielding f".(6.)=—cothu and f. (0.)=(1/2)[In(1—e 2

In the limit A—0 the distributionP(x,t) is centered +cothu]. Performing the Gaussian integrals about the
about the noiseless solutid@.4). In terms of the exact so- maxima we thus obtain the asymptotic result valid for small
lution (6.5) this is a singular limit since both order and argu- A and fixedu, i.e., fixedx/t.
ment in | ,(x) diverge. Using the spectral representation

or further reduced for (2—1)A<\ the expressiori6.11).

[44,45 P(x D)~ 1/2i X_S (172)+ (N /2A)
’ 27TA XO At
(z12)Y w .,
l,(2)= TL coshx cos)sirt’6dé, X(l_e—zu)(uz)m\/zA) F{_ F(x,t)
Flvt3) 3 (sinh 2u) Y2 24t |’
(B11) (B16)
: ina th bl .
introducing the variabler according to WhereF(x,t)=x2+x§—)\t cothu or by insertion
At
sinhu=m, (B12) F(X,1) =x2+x5—[(2x%0) >+ (A 1)?]*2, (B17)
defining In the short time limitAt<<2xx, u is small_and sinf
~u, i.e., Uu~At/2xx, and we obtain P(xt)
. 1 cosé ~ (172w At) Y2exd — (x—xo)%/2At], yielding 8(x—x,) for t
fo(0)=Insin+ 5| 1=, (B13)  =0. The weak coupling limih—0 for fixed x andt is also
consistent; we  obtain P(x,t)~(1/27At)Y%exd —(x
and using —Xo)?/2At]. For weak noise the peak of the distribution is
N determined by the conditioR =0, yielding x= (x3—\t)*?
rl1e 1 ~ mr\[2e M2 A (B14) and the peak thus follows the noiseless finite-time-singularity
2A 2 2A ' solution (2.4).
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