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Power laws and stretched exponentials in a noisy finite-time-singularity model

Hans C. Fogedby*
Institute of Physics and Astronomy, University of Aarhus, DK-8000, Aarhus C, Denmark

and NORDITA, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark

Vakhtang Poutkaradze†

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141
~Received 11 April 2002; published 9 August 2002!

We discuss the influence of white noise on a generic dynamical finite-time-singularity model for a single
degree of freedom. We find that the noise effectively resolves the finite-time-singularity and replaces it by a
first-passage-time or absorbing state distribution with a peak at the singularity and a long time tail exhibiting
power law or stretched exponential behavior. The study might be of relevance in the context of hydrodynamics
on a nanometer scale, in material physics, and in biophysics.
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I. INTRODUCTION

There is a continuing current interest in the influence
noise on the behavior of nonlinear dynamical systems@1,2#.
Here the issues, for example, associated with the interfere
of stochastic noise with the deterministic chaos of maps@3#
or extended systems, as for example, the noise-dr
Kuramoto-Shivashinski equation@4#, are of fundamental in-
terest.

In a particular class of systems the nonlinear chara
gives rise to finite-time-singularities, that is, solutions th
cease to be valid beyond a particular finite-time span. O
encounters finite-time singularities in stellar structure, tur
lent flow, and bacterial growth@5–7# as well as in in Euler
flows and in free-surface flows@8–10#. Finite-time singulari-
ties are also encountered in modeling in econophysics, g
physics, and material physics@11–16#.

In the context of hydrodynamical flow on a nanosca
@17#, where microscopic degrees of freedom come into p
it is a relevant issue how noise influences the hydrodyna
cal behavior near a finite-time singularity. Leaving aside
issue of the detailed reduction of the hydrodynamical eq
tions to a nanoscale and the influence of noise on this s
to further study, we assume in the present context tha
single variable or ‘‘reaction coordinate’’ effectively captur
the interplay between the singularity and the noise.

We thus propose to consider a simple generic model
tem with one degree of freedom governed by a nonlin
Langevin equation driven by Gaussian white noise,

dx

dt
52

l

2uxu11m
1h, ^hh&~ t !5Dd~ t !. ~1.1!

The model is characterized by the coupling parameterl,
determining the amplitude of the singular term, the indexm
>0, characterizing the nature of the singularity, and
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noise parameterD determining the strength of the noise co
relations. Specifically, in the case of a thermal environm
at temperatureT the noise strengthD}T.

In the absence of noise this model exhibits a finite-tim
singularity at a timet0, where the variablex vanishes with a
power law behavior determined bym. When noise is added
the finite-time-singularity event att0 becomes a statistica
event and is conveniently characterized by a first-passa
time distributionW(t) @18#. For zero noise we thus hav
W(t)5d(t2t0), restating the presence of the finite-time si
gularity. In the presence of noiseW(t) develops a peak abou
t5t0, vanishes at short times, and acquires a long time t

The model in Eq.~1.1! has also been studied in the co
text of persistence distributions related to the nonequilibri
critical dynamics of the two-dimensionalXY model@19# and
in the context of non-Gaussian Markov processes@20#. Fi-
nally, regularized for smallx, the model enters in connectio
with an analysis of long-range correlated stationary p
cesses@21#.

It follows from our analysis below that form50, the
logarithmic case, the distribution at long times is given
the power law behavior

W~ t !;t2a, a5
3

2
1

l

2D
. ~1.2!

For vanishing nonlinearity, i.e.,l50, the finite-time singu-
larity is absent and the Langevin equation~1.1! describes a
simple random walk of the reaction coordinate, yielding t
well-known exponenta53/2 @18,22,23#. In the nonlinear
case with a finite-time singularity the exponent attains a n
universal correction depending on the ratio of the nonlin
strength to the strength of the noise; for a thermal envir
ment the correction is proportional to 1/T.

In the generic case form.0 considered here we find tha
the falloff is slower and that the correction to the rando
walk result is given by a stretched exponential,

W~ t !;t23/2exp@A~ t2m/(21m)21!#, ~1.3!
©2002 The American Physical Society03-1
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HANS C. FOGEDBY AND VAKHTANG POUTKARADZE PHYSICAL REVIEW E66, 021103 ~2002!
whereA→l/Dm for m→0; in the limit m→0 this expres-
sion reduces to expression~1.2!. The above results form
50 andm.0 have also been obtained in the context of
critical dynamics of theXY model @19#.

The paper is organized in the following manner. In Sec
we introduce the finite-time-singularity model in the nois
less case and discuss its properties. In Sec. III we cons
the noisy case and discuss the ensuing Langevin equa
and associated Fokker Plank equation. We discuss the
tionship to an absorbing state problem and introduce
first-passage-time or absorbing state distribution. In Sec
we review the weak noise WKB phase space approach to
Fokker-Planck equation, apply it to the finite-tim
singularity problem, and discuss the associated dynam
phase space problem. In Sec. V we apply the WKB ph
space approach and evaluate the weak noise absorbing
distribution at long times. We derive the random walk res
in the linear case forl50, the power law tail form50, and
the stretched exponential behavior form.0. In Sec. VI we
derive an exact solution of the Fokker-Planck equation in
casem50 in terms of a Bessel function and present an
pression for the absorbing state distribution. In Sec. VII
present a summary and a conclusion. Details of the ph
space method is discussed in Appendix A; aspects of
exact solution in Appendix B.

II. FINITE-TIME-SINGULARITY MODEL

Let us first consider the noiseless case forD50. It is
instructive to express the equation of motion~1.1! in the
form

dx

dt
52

1

2

dF

dx
, ~2.1!

where the potential or free energy has the form,

F~x!5l lnuxu for m50, ~2.2!

F~x!52
l

m
uxu2m for m.0. ~2.3!

The free energy has a logarithmic sink form50 and a power
law sink for generalm.0. In both casesF drives x to the
absorbing statex50. Solving Eq.~2.1! in the logarithmic
case we obtain for positivex the solution

x5AlAt02t. ~2.4!

This solution displays a finite-time singularity att05x0
2/l,

wherex0 is the initial value at timet50, with x approaching
the absorbing state with exponent 1/2. In other words,
attraction to the sink in the free energy occurs in a finite ti
span; for times beyondt0 Eq. ~2.1! does not possess a re
solution. This is the way we define a finite-time singularity
the present context. For generalm.0 we obtain the gener
alization of the solution~2.4!,

x5@l~21m!/2#1/(21m)@ t02t#1/(21m), ~2.5!
02110
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which approach the absorbing state with exponent 1
1m) at time t052x0

21m/l(21m). In Fig. 1 we have form
50 depicted the solutionx and the free energyF(x) driving
x to zero.1

III. LANGEVIN AND FOKKER-PLANCK EQUATIONS

In the presence of noise the finite-time-singularity pro
lem is characterized by the Langevin equation~1.1!. Here the
noise drives the variablex into a fluctuating state in compe
tition with the free energy that tends to drivex to the absorb-
ing statex50. In the casem>0 treated here with an absorb
ing state the free energy has a sink and there is no statio
distribution; the probability leaks out atx50.2

From another point of view, introducing the variabley
5x21m the Langevin equation~1.1! takes the form

1

21m

dy

dt
52

l

2
1y1/(21m)h. ~3.1!

In the noiseless case the variabley decreases linearly to zer
at time t5t0. In the presence of noisey fluctuates. We note
however, that the noise is manifestly quenched aty50,
yielding the absorbing state. Absorbing state models of
type in Eq. ~3.1! for extended systems have been stud
extensively in the context of directed percolation, catalys
and Reggeon field theory@24–27#.

In order to analyze the stochastic aspects of finite-ti
singularities in the presence of noise we need the tim
dependent probability distributionP(x,t) and the derived
first-passage-time or absorbing state probability distribut
W(t). The distributionP(x,t) is defined according to@23,28#

1For m,0 the free energy vanishes atx50. For m,22 x pos-
sesses a run-away solution at a finite time. In the present contex
confine our discussion to the casem.0, where the free energy ha
a sink andx approaches an absorbing state.

2In the casem522 the free energy,F5(l/2)x2, has the form of
a harmonic potential and the resulting Langevin equation,dx/dt5
2(l/2)x1h, governs the stochastic dynamics of an overdamp
noise-driven harmonic oscillator. The stationary distribution
given by the Boltzmann factorP0}exp(2F/T), where the effective
temperature according to the fluctuation-dissipation theorem iT
5D. For 22,m,0 the same result holds with the free ener
given by Eq.~2.3!.

FIG. 1. In~a! we show the time evolution of the single degree
freedomx. x reaches the absorbing statex50 at a finite timet0. In
~b! we depict the free energyF(x) driving the equation. The ab
sorbing statex50 corresponds to the sink inF(x).
3-2
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POWER LAWS AND STRETCHED EXPONENTIALS IN A . . . PHYSICAL REVIEW E66, 021103 ~2002!
P~y,t !5^d„y2x~ t !…&, ~3.2!

wherex is a stochastic solution of Eq.~1.1! and ^•••& indi-
cates an average over the noiseh driving x. In the absence o
noiseP(y,t)5d„y2x(t)…, wherex is the deterministic solu-
tion of Eq.~2.1! given by Eqs.~2.4! and~2.5! and depicted in
Fig. 1. At time t50 the variablex evolves from the initial
conditionx0, implying the boundary condition

P~x,0!5d~x2x0!. ~3.3!

At short timesx is close tox0 and the singular term is not ye
operational. In this regime we then obtain ordinary rand
walk with the Gaussian distribution

P~x,t !5~2pDt !21/2expF2
~x2x0!2

2Dt G , ~3.4!

approaching Eq.~3.3! for t→0. At longer times the barrie
l/2x11m comes into play preventingx from crossing the ab-
sorbing statex50. This is, however, a random event that c
occur at an arbitrary time instant, i.e., the finite-time sing
larity taking place att0 in the deterministic case is effectivel
resolved in the noisy case. For not too large noise stren
the distribution is peaked about the noiseless solution
vanishes forx→0, corresponding to the absorbing state, i
plying the boundary condition

P~0,t !50. ~3.5!

In order to model a possible experimental situation the fi
passage-time or here absorbing state distributionW(t) is of
more direct interest@28,29#. First-passage properties in fa
underlie a large class of stochastic processes such as d
sion limited growth, neuron dynamics, self-organized cr
cality, and stochastic resonance@18#.

SinceP(0,t)50 for all t due to the absorbing state, th
probability thatx is not reachingx50 in time t is thus given
by *0

`P(x,t)dx, implying that the probability2dW that x
does reachx50 in time t is 2dW52*0

`dxdt(dP/dt). Con-
sequently, the absorbing state distributionW(t) is deter-
mined by the expression@23#

W~ t !52E
0

`]P~x,t !

]t
dx. ~3.6!

In the absence of noiseP(x,t)5d„x2x(t)… and it follows
from Eq. ~3.6! that W(t)5d(t2t0), in accordance with the
finite-time singularity att5t0. For weak noise we anticipat
that W(t) will peak aboutt0 with vanishing tails for smallt
and larget. In Fig. 2 we have depicted a particular realizati
of x in the noisy case, the distributionP(x,t) in a plot versus
x and t, and the absorbing state distributionW(t).

In the case of Gaussian white noise the distribut
P(x,t) satisfies the Fokker-Planck equation@28,29#

]P

]t
5

1

2

]

]x F2
dF

dx
P1D

]P

]x G , ~3.7!
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in the present case subject to the boundary conditi
P(x,0)5d(x2x0) and P(0,t)50. The absorbing state dis
tribution W(t) then follows from Eq.~3.6!. We note that the
Fokker-Planck equation has the form of a conservat
law ]P/]t1]J/]x50, defining the probability currentJ
5(1/2)(dF/dx)P2(1/2)D]P/]x. Inserting Eq.~3.7! in the
expression~3.6! for the distributionW(t) and using thatJ
→0 for x→` we obtain another expression forW(t):

W~ t !5
1

2 FD ]P

]x
2P

dF

dxG
x50

. ~3.8!

The absorbing state distribution is thus equal to the proba
ity current at the absorbing state.

IV. WKB PHASE SPACE APPROACH

From a structural point of view the Fokker-Planck equ
tion ~3.7! has the form of an imaginary-time Schro¨dinger

FIG. 2. In ~a! we show a particular realization ofx. At early
times nearx0 we have random walk behavior. At longer timesx is
attracted to the absorbing state atx50. In ~b! we depict the distri-
bution P(x,t) in the logarithmic case form50. For t50 P(x,0)
5d(x2x0), i.e., the initial condition. For largert the distribution is
broadened about the noiseless trajectory.P(x,t) exhibits a power
law behavior for larget near the absorbing state. In~c! we show the
absorbing state distributionW(t). For small t the distribution is
exponentially small; for larget it displays a power law behavior fo
m50 and a stretched exponential behavior in the generic case
m.0.
3-3
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HANS C. FOGEDBY AND VAKHTANG POUTKARADZE PHYSICAL REVIEW E66, 021103 ~2002!
equationD]P/]t5HP, driven by the Hamiltonian or Liou-
villian H. The noise strengthD then plays the role of an
effective Planck constant withP corresponding to the wav
function. A method utilizing a nonperturbative WKB pha
space approach to a generic Fokker-Planck equation for
tended system was derived in the context of the Kard
Parizi-Zhang equation describing interface growth@30–32#.
In the case of a single degree of freedom this meth
amounts to the eikonal approximation@2,23,29#, see also
@33,34#. For systems with many degrees of freedom
method has for example been expounded in Ref.@35#, based
on the functional formulation of the Langevin equatio
@36,37#. In the present formulation@30–32# the emphasis is
on the canonical phase space analysis and the use of dyn
cal system theory@38,39#, for more details we refer to Ap
pendix A.

The weak noise WKB approximation corresponds to
ansatzP}exp@2S/D#. The weight function or actionS then
to leading asymptotic order inD satisfies a Hamilton-Jacob
equation]S/]t1H50 which in turn implies aprinciple of
least actionand Hamiltonian equations of motion@40,41#. In
the present context the Hamiltonian has the form

H5
1

2
p22

1

2
p

dF

dx
, ~4.1!

yielding the equations of motion

dx

dt
52

1

2

dF

dx
1p, ~4.2!

dp

dt
5

1

2
p

d2F

dx2
, ~4.3!

replacing the Langevin equation~1.1!. The noiseh is then
represented by the momentump5]S/]x conjugate tox. The
Eqs. ~4.2! and ~4.3! determine orbits in a canonical pha
space spanned byx andp. Since the system is conserved t
orbits lie on the constant energy manifold~s! given by E
5H. The free energyF is given by Eqs.~2.2! and~2.3! and
the action associated with an orbit fromx0 to x in time t has
the form

S~x0→x,t !5E
0

t

dtFp
dx

dt
2HG . ~4.4!

According to the ansatz the probability distribution is th
given by

P~x,t !}expF2
S~x0→x,t !

D G . ~4.5!

The zero-energy manifoldE50 plays an important role in
determining the long time distributions. InsertingdF/dx
5l/x11m in Eq. ~4.1! the zero-energy manifold has a su
manifold structure given byp50 andp5l/x11m. Accord-
ing to Eq. ~4.2! the p50 submanifold corresponds to th
noiseless deterministic motion given by Eq.~2.1!. In Fig. 3
we have depicted the canonical phase space spannedx
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and p. The heavy lines represent the zero-energy subm
folds p50 and p5l/x11m. For E.0 the energy surface
are equidistant for largex approaching a constantp value;
for small x the manifold p;l/x11m for p.0 and p
;24Ex11m/l for p,0. For E,0 the energy surfaces ar
confined between the zero-energy submanifolds; the m
folds approach (x,p)5(0,0) according top;4uEux11m/l
and for largep as p;l/x11m. For E→2` the orbits ap-
proach the positivep half-axis. The arrows indicate the d
rection of motion on the manifolds. The dashed line indica
a nullcline (dx/dt50) passing through the hyperbolic fixe
point (x,p)5(`,0). In the long time limit the orbit fromx0
to x converges towards the zero-energy submanifolds.

V. RANDOM WALK AND LONG TIME TAILS

The weak noise phase space approach reviewed a
affords a simple derivation of the asymptotic long time b
havior of the distributions for the finite-time-singularit
problem. In order to derive the transition probabilityP(x,t)
according to Eq.~4.5! we simply have to identify the rel-
evant orbit in phase space fromx0 to x which at long times
passes close to the zero-energy manifolds.

A. The random walk case

It is instructive first to consider the casel50. Here the
finite-time singularity atx50 is absent, there is no absorbin
state and the Langevin equation~1.1! takes the formdx/dt
5h(t), describing random walk on the whole axis. Th
Hamiltonian is given byH5(1/2)p2 and the equations o
motion ~4.2! and ~4.3! have the formdx/dt5p, dp/dt50
with solutionsp5p0 andx5x01p0t. Insertingdx/dt andH
in Eq. ~4.4! for the action we obtainS5(1/2)*0

t dt p2

5(1/2)p0
2t and finally using Eq.~4.5! the Gaussian distribu

tion ~3.4! for random walk.
We note that in order to obtain the correct limit of th

finite-time-singularity problem we must incorporate the a

FIG. 3. We show the topology of phase space. The bold li
indicate the zero-energy submanifolds. We show representative
bits for E.0 and E,0. The dashed line indicates a nullclin
(dx/dt50) to the saddle point (x,p)5(`,0). At long times the
orbit from x0 to x migrates to the zero-energy submanifolds.
3-4
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POWER LAWS AND STRETCHED EXPONENTIALS IN A . . . PHYSICAL REVIEW E66, 021103 ~2002!
sorbing state condition atx50. This is achieved by using th
method of mirrors@23# and considering forP(x,t) the linear
combination,

P~x,t !5~2p Dt !21/2S expF2
~x2x0!2

2Dt G
2expF2

~x1x0!2

2Dt G D , ~5.1!

in the half spacex>0. This distribution is a solution of the
Fokker-Planck equation and vanishes forx50. For smallx it
behaves linearly withx,

P~x,t !5~2/p!1/2x~Dt !23/2x0 exp~2x0
2/2Dt !. ~5.2!

Using Eq. ~3.8! we readily obtain the well-known random
walk result

W~ t !5~2/p!1/2x0~Dt !23/2exp~2x0
2/2Dt !. ~5.3!

For small t the distribution vanishes exponentially. It di
plays a maximum att05x0

2/3D and falls off algebraically as
t2a for large t with scaling exponenta53/2. This behavior
is in accordance with the general discussion in Sec. III an
graphically depicted in Fig. 2. The phase space topology
the random walk case is shown in Fig. 4.

B. The absorbing state case

For zero noise and forl50 we have from Eq.~1.1! x
5x0 at all times, whereas the solution in the case of a fin
time singularity is attracted to the absorbing state at timet0.
In the presence of noise the attraction gives rise to a cha
of the form of the absorbing state distributionW(t) from ad
function peak to a broadened peak. For largel the distribu-
tion shows a maximum aboutt0; for intermediate values ofl
the maximum is betweent0 and the random walk value
x0

2/3D. Because of the attraction to the absorbing state
also obtain a faster long time fall-off and thus a positi
correction to the random walk exponenta53/2, depending
on the strengthl.

The plot in Fig. 3 permits a simple qualitative discussi
of the finite-time-singularity phase space phenomenolo
Firstly, a short time orbit fromx0 to x corresponds to large

FIG. 4. We depict the phase space topology in the random w
case forl50. The energy manifolds are equidistant correspond
to constant values ofp. The bold line forp50 is the zero-energy
manifold.
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value of upu. In this region and for not too smallx the phase
space topology in Fig. 3 is similar to the random walk ca
depicted in Fig. 4 and we infer unbiased random walk b
havior, yielding the expressions~5.1! and ~5.3!. Second,
searching for longer time orbits fromx0 to x we must choose
smallerp and we move into the region of phase space
negative energy where the finite-time singularity domina
the topology, as shown in Fig. 3. In the limit of long time
the orbit approaches asymptotically the zero-energy s
manifolds.

1. The logarithmic case µÄ0

In the logarithmic casem50 the zero-energy condition
using Eqs.~4.1! and ~2.2! yields the relationshipp5l/x,
corresponding to the hyperbolic manifold; note that thep
50 manifold corresponds to deterministic motion and yie
S50. Settingp5l/x andH50 in the action in Eq.~4.4! we
then haveS5* tdt pdx/dt5*xdx l/x5l ln x. Moreover, for
p5l/x the equation of motion~4.2! reduces todx/dt
5l/2x with the growing solutionx25lt. In the long time
limit where the orbit is close to the zero-energy manifold w
thus obtainS;(l/2)ln t, yielding according to Eq.~4.5! the
power law distributionP(x,t)}t2(l/2D). Owing to the ab-
sorbing state the distributionP(x,t) must vanish forx→0.
As discussed in Appendix A this limit is reproduced by pus
ing the WKB approximation in Sec. IV to next order inD,
yielding the correction2D ln x to S. Finally, we obtain in the
weak noise long time limit the distribution

P~x,t !}xt2(l/2D). ~5.4!

Moreover, applying Eq.~3.8! we deduce the weak noise lon
time absorbing state distribution

W~ t !}t2(l/2D), ~5.5!

with scaling exponenta5l/2D The expressions~5.4! and
~5.5! show that the finite-time singularity or, equivalentl
absorbing state attracts the random walker and increase
falloff exponenta. We note that the WKB approximation t
leading order inD fails to retrieve the random walk expone
3/2 in the limit l→0 and the maximum ofW(t) aboutt0.

2. The generic casemÌ0

In the generic casem.0 the zero-energy manifold im
plies the constraintp5l/x11m and we obtain similar to the
logarithmic case above the actionS5* tdt pdx/dt
5*xdx l/x11m52(l/m)x2m1const and the equation o
motion, dx/dt5l/2x11m, on the zero-energy manifold with
solution xm125(11m/2)lt. In the long time limit we thus
find the action S52(l/m)@(11m/2)lt#2m/(21m)1l/m.
The second-order correction toS, evaluated in Appendix A,
is given by 2D(11m)ln x and we obtain the weak nois
long time distribution

P~x,t !}x11m expX l

Dm F H S 11
m

2 DltJ 2[m/(21m)]

21G C,
~5.6!

lk
g

3-5
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HANS C. FOGEDBY AND VAKHTANG POUTKARADZE PHYSICAL REVIEW E66, 021103 ~2002!
and absorbing state distribution

W~ t !;expX l

Dm F H S 11
m

2 DltJ 2[m/(21m)]

21G C. ~5.7!

The expressions~5.6! and ~5.7! show that in the case of
generic finite-time singularity characterized by the indexm
the power law behavior ofP(x,t) and W(t) is altered to a
stretched exponential behavior depending onm. In the limit
m→0 we obtain the power law behavior. We note again t
the WKB approximation is unable to produce the rand
walk prefactort23/2 for l50 and the peak ofW(t) aboutt0.

VI. SOLUTION OF THE FOKKER-PLANCK EQUATION

In this section we return to the Fokker-Planck equat
~3.7! and present exact expressions for the transition pr
ability P(x,t) and the absorbing state distributionW(t) in
the the logarithmic casem50. We have summarized ke
points in the derivation here and defer details to Appendix

A. Quantum particle in a repulsive potential

In the logarithmic case the Fokker-Planck equation
sumes the form

]P

]t
5

D

2

]2P

]x2
1

l

2x

]P

]x
2

l

2x2
P. ~6.1!

Removing the first-order term by means of the gauge tra
formation exp(h)5x2l/2D we have

2D
]

]t
@exp~2h!P#5H@exp~2h!P#, ~6.2!

where the HamiltonianH is given by

H52
1

2
D2

]2

]x2
1

l2

8 F11
2D

l G 1

x2
. ~6.3!

This Hamiltonian describes the motion of a unit mass qu
tum particle in one dimension subject to a centrifugal bar
of strength (l2/8)(112D/l). For l50 the barrier is absen
and the particle can move over the whole axis; this c
corresponds to ordinary random walk@23#. For lÞ0 the
particle cannot cross the barrier and is confined to eit
half-space; this corresponds to the case of a finite-time
gularity subject to noise and an absorbing state atx50.

The Fokker-Planck equation~6.2! has the form of an
imaginary time Schro¨dinger equation with Planck constantD
for the wave function exp(2h)P and is readily analyzed in
terms of Bessel functions@42#. Incorporating the initial con-
dition P(x,0)5d(x2x0) by defining P(x,t)→P(x,t)u(t)
we obtain the inhomogeneous differential equation

]P~x,t !

]t
5d~x2x0!d~ t !2

D

2
ehHe2hP~x,t ! ~6.4!

for the determination ofP(x,t). On the positivex andk axis
the wave functionsck(x)5(kx)1/2J1/21l/2D(kx) form, ac-
02110
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cording to the Fourier-Bessel transform@43#, an orthonormal
and complete set satisfying the eigenvalue equa
Hck(x)5(D2/2)k2ck(x). Expanding the right hand side o
Eq. ~6.4! on the setck and using a well-known identity for
Bessel functions@44,45# we obtain for the probability distri-
bution P(x,t) the following closed expression:

P~x,t !5
x(l/2D)1(1/2)

x0
(l/2D)2(1/2)

e2(x21x0
2)/2Dt

Dt
I 1/21(l/2D)S xx0

Dt D .

~6.5!

Here I n is the Bessel function of imaginary argument,I n(z)
5(2 i )nJn( iz) @43#.

By means of Eq.~3.8! we moreover deduce the absorbin
state distribution

W~ t !5
2x0

11l/D

G~1/21l/2D!
e2x0

2/2Dt~2Dt !2(3/2)2(l/2D).

~6.6!

Similar expressions have also been derived in the contex
the XY model @19#.

B. The distribution P„x,t…

The expression~6.5! provides the complete solution of th
finite-time-singularity problem form50. The expression is
discussed in more detail in Appendix B. Fort50 we have
P(x,0)5d(x2x0) in accordance with the initial condition
~3.3!. For smallt we obtain the random walk resultP(x,t)
5exp@2(x2x0)

2/2Dt#/(2pDt)1/2 in accordance with Eq.
~3.4!. For l50 we haveP(x,t)5$exp@2(x2x0)

2/2Dt#1x0
→2x0%/(2pDt)1/2 in agreement with Eq.~5.1! for random
walk with an absorbing wall atx50.

For long times andx close to the absorbing statex50 we
obtain the asymptotic form

P~x,t !}
2xx0

11l/De2(x21x0
2)/2Dt

GS 3

2
1

l

2D D ~2Dt !2(3/2)2(l/2D).

~6.7!

For smallx the distribution vanishes linearly due to the a
sorbing state. For larget the distribution exhibits a powe
law behavior with scaling exponenta53/21l/2D. In the
weak noise limit the distribution is peaked about the noi
less solution~2.4!. For l50 we obtain the random walk
result in Eq.~5.2! and we note that the finite-time singularit
or absorbing state lead to an increase of the scaling expo
and thus a faster falloff in time. In the weak noise limit th
scaling exponent approachesl/2D in agreement with the
WKB analysis in Sec. IV. In Fig. 2 we have depicted th
distributionP(x,t).

C. The distribution W„t…

The absorbing state distributionW(t) in Eq. ~6.6! van-
ishes exponentially for smallt. For larget the distribution
shows a power law behavior with exponenta53/21l/2D.
3-6
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In the deterministic limitD50 we haveW(t)5d(t2t0),
wheret05x0

2/l. For smallD the exponent approachesl/2D
in accordance with Eq.~5.5!. The distribution has a maxi
mum at

tmax5
x0

2

3D1l
. ~6.8!

For D50 we havetmax→t0 and for l50 the random walk
result tmax5x0/3D. For large coupling strengthtmax→0. Ex-
pandingW(t) abouttmax we obtain the Gaussian distributio

W~ t !}e2(t2tmax)
2/s2

, ~6.9!

characterized by the mean square width

s25
4Dx0

4

~3D1l!3
. ~6.10!

SinceW(t) falls off as a power oft only a finite number of
moments ^tn&5* tnW(t)dt exists. For (2n21)D,l we
have

^tn&5 )
p51

n S x0
2

l2~2p21!D
D . ~6.11!

The distributionW(t) is shown in Fig. 2.

VII. SUMMARY AND CONCLUSION

In this paper we have addressed the problem of the in
ence of white Gaussian noise of strengthD on a generic
finite-time singularity of strengthl, characterized by the ex
ponentm. We have for simplicity considered only a sing
degree of freedom. We have found that in the case of a lo
rithmic sink in the free energy driving the variable, corr
sponding to a square root singularity, the first-passage-t
or absorbing state distributionW(t) displays a peak abou
the finite-time singularity and a long time power law ta
}t2a, characterized by the scaling exponenta53/21l/2D.
The exponent is nonuniversal and depends on the ratio
tween the singularity strengthl and the noise strengthD. In
the case where the noise originates from a thermal envi
ment at temperatureT we haveD}T and the scaling expo
nent depends on the temperature,a53/21const/T.

In the generic case of a finite-time singularity charact
ized by the exponentm.0 the weak noise WKB approac
shows that the power law tail form50 is changed to a
stretched exponential with a slower falloff.

To the extent that the character of a finite-time singula
in the vicinity of threshold can be modeled with a sing
degree of freedom the present study should hold as re
the influence of noise on the time distribution. We note,
particular, that in the case of a thermal environment at te
peratureT the change of the scaling exponent becomes la
in the limit of low temperatures as the distribution narro
around the noiseless threshold time.
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The present study also suggests generalizations to the
of damping and to the case of several coupled variable s
ject to a finite-time singularity.
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APPENDIX A: THE PHASE SPACE METHOD

The weak noise WKB approximation applied to th
Fokker-Planck equation is well documented@1,23,29,34#.
Here we review this method with emphasis on a canon
phase space approach which we have found useful in
cussing the pattern formation and scaling in the noisy B
gers equation@30,32,46–48#. We also note that the approac
follows from a saddle point approximation to the function
Martin-Siggia-Rose approach to nonlinear Langevin eq
tions @36,37,49,50#.

1. To leading order D

Taking as our starting point a generic Langevin equat
for one degree of freedomx driven by Gaussian white noise

dx

dt
52

1

2
G~x!1h~ t !, ^hh&~ t !5d~ t !, ~A1!

the associated Fokker-Planck equation for the distribut
P(x,t) takes the form

]P

]t
5

1

2

]

]x FGP1D
]P

]x G . ~A2!

Applying like in quantum mechanics@42# the WKB approxi-
mation,

P~x,t !}expF2
S~x,t !

D G , ~A3!

and expanding the actionS in powers of the noise strengt
D, S5S01DS1 , S0 satisfies the Hamilton-Jacobi equatio
@40#

]S0

]t
1H~p,x!50, p5

]S0

]x
, ~A4!

implying a principle of least action@40#. The actionS0 thus
has the form

S0~x,t !5E dtS p
dx

dt
2H D ~A5!

with Hamiltonian given by
3-7
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H5
1

2
p~p2G!, ~A6!

implying the Hamilton equations of motion

dx

dt
52

1

2
G1p, ~A7!

dp

dt
5

1

2
p

dG

dx
. ~A8!

The deterministic coupled Eqs.~A7! and ~A8! replace the
stochastic Langevin equation~1.1! for weak noise. The noise
h is replaced by the canonically conjugate momentump,
which by means of Eqs.~A3! and ~A4! is given in terms of
the distributionP

p52D] ln P/]x. ~A9!

The equations of motion define orbits in a (x,p) phase
space lying on the constant energy surfacesE5H and the
general discussion of the original stochastic problem is
placed by an analysis of the phase space topology. The
scription for deriving the distribution to leading order inD
thus amounts to~i! solve the equations of motion~A7! and
~A8! for an orbit from an initial valuex0 to a final valuex
reached in the time spant, p being a slaved variable,~ii !
evaluate the actionS associated with an orbit according
Eq. ~A5!, and, finally, ~iii ! derive the transition probability
from x0 to x in time t using the ansatz~A3!. The zero-energy
manifold here plays an important role in determining t
long time distributions. In the limitt→` a given finite-time
orbit from x0 to x thus converges to the zero-energy ma
fold.

In the case of an overdamped harmonic oscillator
scribed by the Langevin equationdx/dt52vx1h the
phase space analysis was carried out in Ref.@30#. In the case
of random walk given bydx/dt5h the analysis is performed
in Sec. V A.

Finite-time-singularity case

In the generic finite-time-singularity case,G5l/x11m,
and we have the HamiltonianH5(1/2)p(p2l/x11m),
yielding the equations of motiondx/dt52l/2x11m1p and
dp/dt52l(11m)p/2x21m. These equations are, howeve
not particularly tractable and we therefore only consider
logarithmic case form50. HereG5l/x and we obtain the
Hamiltonian

H5
1

2
pS p2

l

x D , ~A10!

and the equations of motion

dx

dt
52

l

2x
1p, ~A11!
02110
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dp

dt
52

l

2

p

x2
. ~A12!

These equations have a hyperbolic fixed point at (x,p)
5(`,0). The nullclinedx/dt50 to the saddle point is given
by p5l/2x, indicated in Fig. 3 by the dashed line. The zer
energy manifolds are given byp50 andp5l/x. The con-
served energyH5E provides the first constant of integra
tion. Solving for x we have x5l/(p222E). For E.0
p→6(2E)1/2 for x→` as indicated in Fig. 3, yielding in
that limit the random walk phase space topology depicted
Fig. 4. ForE,0 x5l/(p212uEu) exhibiting a maximum at
the nullcline in a plot ofx versusp as shown for two repre-
sentative orbits in Fig. 3. Using energy conservation to so
the equation of motion forp and subsequently forx we ob-
tain the solutionsx25(t1t1)@l12E(t1t1)# and p252E
1l/(t1t1), wheret1 is the second constant of integration.
specific orbit fromx0 to x1 in time t thus determines the
constantsE and t1; the momentump becomes a slaved vari
able, and the action evaluated along the orbit yields the
tribution.

Considering as final value the absorbing statex150, the
long time orbits lie in the negative energy region and elim
natingE we obtain the solution, 0,t8,t

x25„x0
2~12t8/t !1lt8…~12t8/t !. ~A13!

The energy is given byuEu5(lt2x0
2)/t2 and we note that

the energy approaches zero in the long time limit, i.e.,
orbit from x0 to x50 migrates to the zero-energy manifol
Finally, for the action associated with the orbit we obtain

S05
1

2 Fl ln
lt

x0
2

21G , ~A14!

yielding the long time distribution

P~x0→0,t !}t2l/2D, ~A15!

in accordance with the expression~5.4!.
Alternatively, eliminating the momentump the equations

of motion ~A11! and ~A12! reduce to a second-order equ
tion for x, d2x/dt252dV/dx, describing the motion of a
particle of unit mass in the attractive potentialV(x)
52(1/8)l2/x2. It then follows by simple quadrature that a
direct orbits to the absorbing statex50 take a finite time,
whereas the traversal time of negative-energy orbits wit
turning point diverges in the limituEu→0; this is in accor-
dance with the phase space behavior shown in Fig 3.

2. Next leading order in D

The next leading order inD is obtained fromS1 which by
insertion satisfies the equation of motion,

2
]S1

]t
5S ]S0

]x
2

G

2 D ]S1

]x
1

1

2

d

dx S G2
]S0

]x D , ~A16!

where]S0 /]x is obtained from the first-order solution.
3-8
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a. Random walk case

From the random walk case discussed in Sec. V A
have S05(x2x0)2/2t. Consequently, Eq.~A16! takes the
form

2
]S1

]t
5S x2x0

t D ]S1

]x
2

1

2
t, ~A17!

with a particular time-dependent solution

S15
1

2
lnutu, ~A18!

yielding S5(x2x0)2/t1(D/2)lnutu and the Gaussian distri
bution

P~x,t !}utu21/2expF2
~x2x0!2

Dt G . ~A19!

As in the quantum case@42# the next leading correction
yields the normalization factorutu21/2.

b. Finite-time-singularity case

In the finite-time-singularity caseG5l/x11m and from
above]S0 /]x50. We then obtain inserting in Eq.~A16!

2
]S1

]t
52

l

2x11m

]S1

]x
2

11m

2

l

x21m
, ~A20!

with a particular space-dependent solution

S152~11m!ln x, ~A21!

giving rise to the factorx11m in Eq. ~5.6!.

APPENDIX B: THE FOKKER PLANCK EQUATION

Here we discuss the Fokker-Planck equation~6.1! in the
logarithmic casem50 in more detail. Applying the gaug
transformation, exp(h)5x2l/2D, and incorporating the bound
ary condition~3.3!, P(x,0)5d(x2x0), we obtain the inho-
mogeneous differential equation~6.4!, with HamiltonianH
given by Eq.~6.3! corresponding to the motion of a quantu
particle subject to a centrifugal barrier}1/x2.

1. Exact solution

The right hand side of Eq.~6.1! has the same form as th
standard Bessel equation@44,45#. Noting also the analogy to
the quantum case of particle motion in spherical coordina
@42# it follows that

ck~x!5~kx!1/2Zn~kx!, ~B1!

whereZn(kx) is a solution of the Bessel equation, satisfi
the eigenvalue equation

Hck~x!5k2ck~x! ~B2!

for n56(1/21l/2D). The Bessel function of the first kind
Jn(kx) satisfies the absorbing state boundary conditionJn
02110
e

s

s

→0 for x→0 and the completeness and orthogonality
ck(x) follow from the Fourier-Bessel integral representati
@44#

f ~r !5E
0

`

dkE
0

`

dr8kJn~kr !Jn~kr8! f ~r 8!, ~B3!

valid for n.1/2. We proceed by Fourier transforming~6.4!,

P~x,t !5E dv

2p
e2 ivtpv~x!, ~B4!

and subsequently expandingpv(x)xl/2D andd(x2x0) on the
eigenfunctionsck(x),

pv~x!xl/2D5E
0

`

dkck~x!pvk , ~B5!

d~x2x0!5E
0

`

dkck~x!ck~x0!, ~B6!

yielding the expansion coefficients

pvk5
x0

l/2Dck~x0!

2 iv1Dk2/2
. ~B7!

Finally, integrating overv in the lower half-plane and pick
ing up contributions from the branch cut we obtain

P~x,t !5E
0

`

dk ke2Dk2t/2~xx0!1/2~x/x0!l/2D

3J1/21l/2D~kx!J1/21l/2D~kx0!. ~B8!

This integral can be reduced further using the identity@45#

E
0

`

dx xe2r2x2
Jn~ax!Jn~bx!5

1

2r2
e(a21b2)/4r2

I n~ab/2r2!,

~B9!

yielding Eq.~6.5! in Sec. VI.

2. Random walk, short time, and long time limits

In the random walk case forl50 we obtain usingI 1/2
52(1/2px)1/2sinhx, the expression~5.1!. In the short time
limit t!xx0 /D, using I n(x)}(1/2px)1/2exp(x) for x→`
@44# we obtain Eq.~3.4! and fort50 the boundary condition
~3.3!.
3-9
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In the long time limit t@xx0 /D using I n(x)
}(x/2)n/G(n11) for x→0 @44# we obtain Eq.~6.7! Using
Eq. ~3.8! andG(z11)5zG(z) we finally obtain the absorb
ing state distribution~6.6!.

The moments ofW(t) are easily worked out. Using
G(z)5*0

`tz21e2tdt @44,45# we have

^tn&5E tnW~ t !dt5S x0
2

2D D n GS 1

2
1

l

2D
2nD

GS 1

2
1

l

2D D , ~B10!

or further reduced for (2n21)D,l the expression~6.11!.

3. Weak noise limit

In the limit D→0 the distributionP(x,t) is centered
about the noiseless solution~2.4!. In terms of the exact so
lution ~6.5! this is a singular limit since both order and arg
ment in I n(x) diverge. Using the spectral representati
@44,45#

I n~z!5
~z/2!n

GS n1
1

2DGS 1

2D E0

p

cosh~x cosu!sin2nu du,

~B11!

introducing the variableu according to

sinhu5
lt

2xx0
, ~B12!

defining

f 6~u!5 ln sinu1
1

2 S 16
cosu

sinhuD , ~B13!

and using

GS 11
l

2D DGS 1

2D'pA2e2l/2DS l

2D D 1/21l/2D

, ~B14!
-

d

Sh

02110
for small D we obtain by insertion in Eq.~6.5!

P~x,t !'
1

4pA2

1

x0

l

D S x0
2

lt D
(1/2)1(l/2D)

e2(x21x0
2)/2Dt

3E
0

p

du
sinu

sinhu
@e(l/D) f 1(u)1e(l/D) f 2(u)#.

~B15!

The expression~B15! for P(x,t) is directly amenable to an
asymptotic analysis forD→0 by means of Laplace’s metho
@51#. For smallD the main contributions to the integral orig
nate from the maxima off 1(u) and f 2(u). The two maxima
in the interval 0,u,p are given by cosu656exp(2u),
yielding f 69 (u6)52cothu and f 6(u6)5(1/2)@ ln(12e22u)
1cothu#. Performing the Gaussian integrals about t
maxima we thus obtain the asymptotic result valid for sm
D and fixedu, i.e., fixedx/t.

P~x,t !'S l

2pD D 1/2 1

x0
S x0

2

lt D
(1/2)1(l/2D)

3
~12e22u!(1/2)1(l/2D)

~sinh 2u!1/2
expS 2

F~x,t !

2Dt D ,

~B16!

whereF(x,t)5x21x0
22lt cothu or by insertion

F~x,t !5x21x0
22@~2xx0!21~lt !2#1/2. ~B17!

In the short time limitlt!2xx0 u is small and sinhu
;u, i.e., u;lt/2xx0 and we obtain P(x,t)
;(1/2pDt)1/2exp@2(x2x0)

2/2Dt#, yielding d(x2x0) for t
50. The weak coupling limitl→0 for fixed x and t is also
consistent; we obtain P(x,t);(1/2pDt)1/2exp@2(x
2x0)

2/2Dt#. For weak noise the peak of the distribution
determined by the conditionF50, yielding x5(x0

22lt)1/2

and the peak thus follows the noiseless finite-time-singula
solution ~2.4!.
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